Data Collection in IoT Using UAV Based on Multi-Objective Spotted Hyena Optimizer

Author:

Al-Khafaji Hamza Mohammed RidhaORCID

Abstract

Today, the use of information and communication technology is very important in making the internet of things (IoT) elements distributable around the earth. With the development of IoT topics, today unmanned aerial vehicles (UAV) are utilized as a platform for gathering data from various IoT devices located worldwide. Determining the number and optimal locations of drones can minimize energy consumption in this data-collection system in the IoT. Using a promising multi-objective optimization algorithm (MOA) can achieve this goal. In this research, a bio-inspired MOA, termed the multi-objective spotted hyena optimizer (MOSHO), is employed on the data-collection platform for a group of IoT devices in a geographical area. The results of this method have been compared with other evolutionary MOAs. The analysis of the results shows that the MOSHO has a noteworthy consequence on the process of optimal energy consumption in this system, in addition to a high convergence associated with better diversity and robustness. The results of this research can be used to identify the optimization parameters in this system.

Funder

Al-Mustaqbal University College

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3