Integrated Transcriptome and Untargeted Metabolomic Analyses Revealed the Role of Methyltransferase Lae1 in the Regulation of Phospholipid Metabolism in Trichoderma atroviride

Author:

Shen Yanxiang,Zhang Yiwen,Zhang Hui,Wang Xinhua,Chen Jie,Li YaqianORCID

Abstract

The putative methyltransferase Lae1 is a global regulator in Trichoderma, which modulates the expression of secondary metabolite gene clusters, possibly via chromatin remodeling. Here we aimed to explore the specific transcription and metabolites profiles regulated by Lae1 in T. atroviride 23. Comparative transcriptomics and metabolome analyses between the lae1 deletion (Mlae1) and over-expressing (Olae1) mutants were performed using RNA sequencing and QTOF-UPLC-MS techniques. In total, 1344 unique differentially expressed genes (DEGs) and 92 metabolites were identified across three strains. The significantly altered metabolic profiles revealed that the lae1 gene modulates central carbon metabolism, amino acid metabolism, secondary metabolism, and phospholipid metabolism. The effects of lae1 on phospholipid metabolism were further explored, and the findings showed that lae1 modulates the composition and function of cell membranes and other metabolic activities, including the phosphotransferase system (PTS) and biosynthesis of secondary metabolites (SM). Phospholipid metabolism is related to energy metabolism, signal transduction, and environmental adaptability of microorganisms. These data showed that Lae1 affects the primary metabolites, phospholipid, as well as the regulation of secondary metabolites in Trichoderma. This study could potentially provoke in-depth investigations of the Lae1-mediated target genes in phospholipid synthesis. The Lae1 may act as a novel target that is associated with disease defense and drug development in the future.

Funder

National Science Foundation of China

Chun-Tsung Program of SJTU

National Key Research and Development Program of China

China Agriculture Research System of MOF and MARA

Agriculture Research System of Shanghai

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3