Kinetic Analysis of Algae Gasification by Distributed Activation Energy Model

Author:

Ji GuozhaoORCID,Raheem Abdul,Wang Xin,Fu Weng,Qu Boyu,Gao Yuan,Li Aimin,Zhao Ming,Dong Weiguo,Zhang ZhienORCID

Abstract

Conversion of algal biomass into energy products via gasification has attracted increasing research interests. A basic understanding of the gasification kinetics of algal biomass is of fundamental importance. Distributed activation energy model (DAEM), which provides the information of energy barrier distribution during the gasification process, is a promising tool to study the kinetic process of algae gasification. In this study, DAEM model was used to investigate Chlorella vulgaris and Spirulina gasification. The activation energy of Chlorella vulgaris gasification was in the range from 370 to 650 kJ mol−1. The range of activation energy for Spirulina gasification was a bit wider, spanning from 330 to 670 kJ mol−1. The distribution of activation energy for both Chlorella vulgaris and Spirulina showed that 500 kJ mol−1 had the most components, and these components were gasified at around 300 °C. The DAEM algorithm was validated by the conversion and conversion rate from experimental measurement, demonstrating that DAEM is accurate to describe the kinetics of algal biomass gasification.

Funder

Key Laboratory of Industrial Ecology and Environmental Engineering of the Ministry of Education

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3