Maximizing Distributed Energy Resource Hosting Capacity of Power System in South Korea Using Integrated Feeder, Distribution, and Transmission System

Author:

Widiputra Victor,Kong Junhyuk,Yang Yejin,Jung JaesungORCID,Broadwater Robert

Abstract

Intermittent power generated from renewable distributed energy resource (DER) can create voltage stability problems in the system during peak power production in the low demand period. Thus, the existing standard for operation and management of the distribution system limits the penetration level of the DER and the amount of load in a power system. In this standard, the hosting capacity of the DER is limited to each feeder at a level where the voltage problem does not occur. South Korea applied this standard, thereby making it hard to achieve its DER target. However, by analyzing the voltage stability of an integrated system, the hosting capacity of DER can be increased. Therefore, in this study, the maximum hosting capacity of DER is determined by analyzing an integrated transmission and distribution system. Moreover, the fast voltage stability index (FVSI) is used to verify the determined hosting capacity of DER. For this, the existing interconnection standard of DER at a feeder, distribution system, and transmission system level is investigated. Subsequently, a Monte Carlo simulation is performed to determine the maximum penetration of the DER at a feeder level, while varying the load according to the standard test system in South Korea. The actual load generation profile is used to simulate system conditions in order to determine the maximum DER hosting capacity.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference18 articles.

1. Power System Stability and Control;Kundur,1994

2. A Monitoring Technique for Reversed Power Flow Detection With High PV Penetration Level

3. Increasing Hosting Capacity in KEPCO Distribution Feeders;Cho;KEPCO J. Electr. Power Energy,2019

4. Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3