Author:
Dong Haotian,Wan Dawei,Liu Minghua,Chen Tiefeng,Gao Shasha,Zhao Yuanbin
Abstract
Due to the hot air recirculation, the inlet air enthalpy h1 of mechanical draft wet cooling towers (MCTs) was usually greater than the ambient air enthalpy ha. To realize the cooling performance and accurate design of MCTs, this paper clarified the feasibility of the inlet air enthalpy empirical formula presented by the Cooling Technology Institute (CTI) of the USA. A three-dimensional (3D) numerical model was established for a representative power plant, with full consideration of MCTs and adjacent main workshops, which were validated by design data and published test results. By numerical simulation, the influence of different wind directions and wind speeds on hot air recirculation (HAR) and the influence of HAR on the cooling performance of the MCTs were qualitatively studied based on the concept of hot air recirculation rate (HRR), and the correction value of HRR was compared with the calculated value of the CTI standard. The evaluation coefficient ηh, representing the ratio of the corrected value to the calculated value was introduced to evaluate the applicability of the CTI formula. It was found that HAR was more sensitive to ambient crosswind, and an increase in HRR would deteriorate the tower cooling performance. When the crosswind speed increased from 0 to 15 m/s, ηh, changed from 2.42 to 80.18, and the calculation error increased accordingly. It can be concluded that the CTI empirical HRR formula should be corrected when there are large buildings around the MCTs, especially under high-speed ambient crosswind conditions.
Funder
National Natural Science Foundation of China
Key Technology Research and Development Program of Shandong Province
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献