Abstract
In recent times, there has been a huge upsurge in malicious attacks despite sophisticated technologies in digital network data transmission. This research proposes an innovative method that utilizes the forward-propagation workflow of the convolutional neural network (CNN) algorithm to detect malicious information effectively. The performance comparison of this approach was accomplished using accuracy, precision, false-positive and false-negative rates with k-nearest neighbor (KNN) and support vector machine (SVM) algorithms. To detect malicious packets in the original dataset, an experiment was carried out using CNN’s forward-propagation workflow method (N = 11) as well as the KNN and the SVM machine learning algorithms with a significant value of 0.005. The accuracy, precision, false-positive and false-negative rates were evaluated to detect malicious packets present in normal data packets. The mean performance measures of the proposed forward-propagation method of the CNN algorithm were evaluated using the Statistical Package for the Social Sciences (SPSS) tool. The results showed that the mean accuracy (98.84%) and mean precision (99.08%) of the proposed forward propagation of the CNN algorithm appeared to be higher than the mean accuracy (95.55%) and mean precision (95.97%) of the KNN algorithm, as well as the mean accuracy (94.43%) and mean precision (94.58%) of the SVM algorithm. Moreover, the false-positive rate (1.93%) and false-negative rate (3.49%) of the proposed method appeared to be significantly higher than the KNN algorithm’s false-positive (4.04%) and false-negative (6.24%) as well as the SVM algorithm’s false-positive (5.03%) and false-negative rate (7.21%). Hence, it can be concluded that the forward-propagation method of the CNN algorithm is better than the KNN and SVM algorithms at detecting malicious information.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献