Investigation into Mode Localization of Electrostatically Coupled Shallow Microbeams for Potential Sensing Applications

Author:

Alneamy Ayman M.ORCID,Ouakad Hassen M.ORCID

Abstract

With the constant need for the development of smart devices, Micro-Electro-Mechanical Systems (MEMS) based smart sensors have been developed to detect hazard materials, micro-particles or even toxic substances. Identifying small particles using such micro-engineering technology requires designing sensors with high sensitivity, selectivity and ease of integration with other electronic components. Nevertheless, the available detection mechanism designs are still juvenile and need more innovative ideas to be even more competitive. Therefore, this work aims to introduce a novel, smart and innovative micro-sensor design consisting of two weakly electrostatically coupled microbeams (both serving as sensors) and electrically excited using a stationary electrode assuming a dc/ac electric signal. The sensor design can be tuned from straight to eventually initially curved microbeams. Such an arrangement would develop certain nonlinear phenomena, such as the snap-through motion. This behavior would portray certain mode veering/mode crossing and ultimately mode localization and it would certainly lead in increasing the sensitivity of the mode-localized based sensing mechanism. These can be achieved by tracking the change in the resonance frequencies of the two microbeams as the coupling control parameter is varied. To this extent, a nonlinear model of the design is presented, and then a reduced-order model considering all geometric and electrical nonlinearities is established. A Long-Time Integration (LTI) method is utilized to solve the static and dynamics of the coupled resonators under primary lower-order and higher-order resonances, respectively. It is shown that the system can display veering and mode coupling in the vicinity of the primary resonances of both beams. Such detected modal interactions lead to an increase in the sensitivity of the sensor design. In addition, the use of two different beam’s configurations in one device uncovered a possibility of using this design in detecting two potential substances at the same time using the two interacting resonant peaks.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference45 articles.

1. Microsystem Design;Senturia,2007

2. PolyMUMPs Design Handbook;Cowen,2011

3. SOIMUMPs Design Handbook;Cowen,2014

4. MEMS & Microsystems: Design, Manufacture, and Nanoscale Engineering;Hsu,2008

5. Review on the Modeling of Electrostatic MEMS

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3