How Hybridization of Energy Storage Technologies Can Provide Additional Flexibility and Competitiveness to Microgrids in the Context of Developing Countries

Author:

Barelli LindaORCID,Bidini GianniORCID,Cherubini PaoloORCID,Micangeli AndreaORCID,Pelosi DarioORCID,Tacconelli CarloORCID

Abstract

Hybrid microgrids, integrating renewable energy sources and energy storage, are key in extending energy access in the remote areas of developing countries, in a sustainably way and in providing a good quality of service. Their extensive development faces a financing gap, having a high capital expenditure (CAPEX) also due to high storage costs. In the present work, a case study of a Ugandan microgrid was used to compare various battery technologies employed on their own and in a combination with a flywheel, in terms of their durability and the overall levelized cost of energy (LCOE) of the plant. Simulations show how hybrid storage configurations result in a lower LCOE for the current load profile of the microgrid and even more so for two reference residential and industrial load scenarios, suggesting this would remain the best solution even accounting for future socio-economic development. The resulting LCOE for hybrid storage configurations is lower than the average values reported for microgrid projects and represents a promising solution to speed up the development of such electrification initiatives.

Funder

Ministero dello Sviluppo Economico

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference60 articles.

1. Microgrids: A review of technologies, key drivers, and outstanding issues

2. Energy Access Outlook 2017: From Poverty to Prosperity,2017

3. United Nations the Sustainable Development Goals Report,2017

4. Africa 2030: Roadmap for a Renewable Energy Future,2015

5. Designing Sustainable Off-Grid Rural Electrification Projects: Principles and Practiceshttps://siteresources.worldbank.org/EXTENERGY2/Resources/OffgridGuidelines.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3