Abstract
Platinum thin films are deposited on open-cell nickel foam with porosity of 95% via spontaneous galvanic displacement. Ni foams with different morphologies and pore size are compared and characterized by electrochemical and structural analysis techniques. The effect of Pt coating on the electrochemical activity is studied by using the Pt coated foam as electrode material for hydrogen evolution reaction in an aqueous alkaline electrolyte. The electrocatalytic activity of the electrodes is evaluated using linear sweep voltammetry curves and Tafel plots as a function of deposition time. The comparison with scanning electron microscopy analyses demonstrates that the catalytic activity has a maximum when the platinum film completely covers the Ni surface. The further increase of the Pt thickness leads to mechanical instability with crack formation and delamination. The effect of the foam morphology on the Pt deposition rate has been evaluated and discussed, determining the minimum Pt amount required to achieve the maximum electrochemical activity, as well as the maximum thickness in order to assure stable characteristics before delamination occurs.
Funder
Fuel Cells and Hydrogen Joint Undertaking
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献