Abstract
In this work, the differential evolution algorithm behavior under a fixed point arithmetic is analyzed also using half-precision floating point (FP) numbers of 16 bits, and these last numbers are known as FP16. In this paper, it is considered that it is important to analyze differential evolution (DE) in these circumstances with the goal of reducing its consumption power, storage size of the variables, and improve its speed behavior. All these aspects become important if one needs to design a dedicated hardware, as an embedded DE within a circuit chip, that performs optimization. With these conditions DE is tested using three common multimodal benchmark functions: Rosenbrock, Rastrigin, and Ackley, in 10 dimensions. Results are obtained in software by simulating all numbers using C programming language.
Subject
Applied Mathematics,Computational Mathematics,General Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献