A Transdisciplinary Approach and Design Thinking Methodology: For Applications to Complex Problems and Energy Transition

Author:

Ozsoy Canan M.1ORCID,Mengüç M. Pinar1ORCID

Affiliation:

1. Center for Energy, Environment and Economy (CEEE/ECEM), Ozyegin University, Cekmekoy, Istanbul 34794, Turkey

Abstract

In this paper, we outline a transdisciplinary approach and design thinking methodology (TADTM) to tackle complex problems. Our premise is that these problems need a fundamental understanding of technological solutions and those for human interactions, business operations, financing, socioeconomic governance, legislation, and regulations. They must be approached by different decisionmakers from different disciplines to establish seamless interactions and structured teamwork. In this regard, we emphasize the need for a transdisciplinary framework that accounts for personal preferences based on human behavior as well as the traditional interdisciplinary frameworks. To test and prove our hypothesis, three case studies are discussed. Case Study 1 is based on our studies at a major medical establishment, and Case Study 2 is about the integrated engineering and architecture approach we used at our university campus. Case Study 3 is based on an ongoing project to lead industrial corporations to change their energy policies with practical energy efficiency measures and by adapting renewable/alternative energy adaptations for their operations. Developing creative solutions and strategies to decrease atmospheric greenhouse gas emissions requires such an energy transition framework and should involve every person, company, entity, and all governments. It can only be achieved with efforts on both local and global levels, which needs to convince (a) industries to change their traditional operation modalities, (b) people to alter their consumption behaviors, and (c) governments to change their rules, regulations, and incentives. The complexity and magnitude of this enormous task demand the coordination and collaboration of all stakeholders, as well as the need for technological innovations.

Publisher

MDPI AG

Reference30 articles.

1. Complexity theory and public management: A “becoming” field;Eppel;Public Manag. Rev.,2018

2. Problem structuring for transitions: The case of Swiss waste management;Scholz;Futures,2009

3. Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., and Möller, V. (2022). Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

4. International Energy Agency (IEA) (2024, February 28). World Energy Outlook. Available online: https://iea.blob.core.windows.net/assets/830fe099-5530-48f2-a7c1-11f35d510983/WorldEnergyOutlook2022.pdf.

5. United Nations Climate Action (2024, February 28). Available online: https://www.un.org/en/climatechange/what-is-climate-change.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3