A Hierarchical Routing Graph for Supporting Mobile Devices in Industrial Wireless Sensor Networks

Author:

Kim SangdaeORCID,Kim CheonyongORCID,Cho HyunchongORCID,Jung KwansooORCID

Abstract

As many industrial applications require real-time and reliability communication, a variety of routing graph construction schemes were proposed to satisfy the requirements in Industrial Wireless Sensor Networks (IWSNs). Each device transmits packet through a route which is designated based on the graph. However, as existing studies consider a network consists of static devices only, they cannot cope with the network changes by movement of mobile devices considered important in the recent industrial environment. Thus, the communication requirements cannot be guaranteed because the existing path is broken by the varying network topology. The communication failure could cause critical problems such as malfunctioning equipment. The problem is caused repeatedly by continuous movement of mobile devices, even if a new graph is reconstructed for responding the changed topology. To support mobile devices exploited in various industrial environments, we propose a Hierarchical Routing Graph Construction (HRGC). The HRGC is consisted of two phases for hierarchical graph construction: In first phase, a robust graph called skeleton graph consisting only of static devices is constructed. The skeleton graph is not affected by network topology changes and does not suffer from packet loss. In second phase, the mobile devices are grafted into the skeleton graph for seamless communication. Through the grafting process, the routes are established in advance for mobile device to communicate with nearby static devices in anywhere. The simulation results show that the packet delivery ratio is improved when the graph is constructed through the HRGC.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3