Shallow Graph Convolutional Network for Skeleton-Based Action Recognition

Author:

Yang WenjieORCID,Zhang JianlinORCID,Cai Jingju,Xu Zhiyong

Abstract

Graph convolutional networks (GCNs) have brought considerable improvement to the skeleton-based action recognition task. Existing GCN-based methods usually use the fixed spatial graph size among all the layers. It severely affects the model’s abilities to exploit the global and semantic discriminative information due to the limits of receptive fields. Furthermore, the fixed graph size would cause many redundancies in the representation of actions, which is inefficient for the model. The redundancies could also hinder the model from focusing on beneficial features. To address those issues, we proposed a plug-and-play channel adaptive merging module (CAMM) specific for the human skeleton graph, which can merge the vertices from the same part of the skeleton graph adaptively and efficiently. The merge weights are different across the channels, so every channel has its flexibility to integrate the joints. Then, we build a novel shallow graph convolutional network (SGCN) based on the module, which achieves state-of-the-art performance with less computational cost. Experimental results on NTU-RGB+D and Kinetics-Skeleton illustrates the superiority of our methods.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3