Influence of Air Infiltration on Combustion Process Changes in a Rotary Tilting Furnace

Author:

Dzurňák RóbertORCID,Varga Augustin,Jablonský GustávORCID,Variny MiroslavORCID,Atyafi Réne,Lukáč LadislavORCID,Pástor Marcel,Kizek JánORCID

Abstract

Air infiltration into the combustion chambers of industrial furnaces is an unwanted phenomenon causing loss of thermal efficiency, fuel consumption increase, and the subsequent increase in operating costs. In this study, a novel design for a rotary tilting furnace door with improved construction features is proposed and tested experimentally in a laboratory-scale furnace, aimed at air infiltration rate reduction by decreasing the gap width between the static furnace door and the rotating body. Temperatures in the combustion chamber and oxygen content in the dry flue gas were measured to document changes in the combustion process with the varying gap width. Volumetric flow values of infiltrating air calculated based on measured data agree well with results of numerical simulations performed in ANSYS and with the reference calculation procedure used in relevant literature. An achievable air infiltration reduction of up to 50% translates into fuel savings of around 1.79 to 12% of total natural gas consumption of the laboratory-scale furnace. The average natural gas consumption increase of around 1.6% due to air infiltration into industrial-scale furnaces can thus likewise be halved, representing fuel savings of almost 0.3 m3 per ton of charge.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3