Continuous UV/H2O2 Process: A Sustainable Wastewater Treatment Approach for Enhancing the Biodegradability of Aqueous PVA

Author:

Parsa Zahra1ORCID,Dhib Ramdhane1,Mehrvar Mehrab1ORCID

Affiliation:

1. Department of Chemical Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada

Abstract

Implementing efficient and cost-effective wastewater treatment methods in wastewater treatment plants (WWTPs) is crucial for ensuring sustainable development in contemporary societies. This study explores the feasibility of a continuous UV/H2O2 tubular photoreactor as a pre-treatment to enhance the biodegradability of aqueous polyvinyl alcohol (PVA) solutions, known as a nonbiodegradable wastewater. Using a combination of a Box–Behnken design (BBD) and the response surface methodology (RSM), three main process variables, including the PVA feed concentration, the inlet H2O2 concentration, and the PVA feed flow rate, are studied within ranges of 500–1500 mg/L, 390–780 mg/L, and 50–150 mL/min, respectively. The results show significant interaction effects between the PVA feed and inlet H2O2 concentrations on the effluent BOD5/COD ratio. The optimal operating conditions are determined using the RSM, with a PVA feed concentration of 665 mg/L, an inlet H2O2 concentration of 390 mg/L, and a PVA feed flow rate of 59 mL/min. Operating at this point leads to an increase in the effluent BOD5/COD ratio from 0.15 to 0.53, which is validated experimentally with a ±5% error. Under these conditions, the effluent demonstrates an enhanced biodegradability, allowing for redirection to a subsequent biological post-treatment phase. This study demonstrates that using the UV/H2O2 process to enhance the biodegradability of an aqueous PVA solution is more economical than focusing on the complete removal of total organic carbon (TOC). Also, a comparison of these results with those of our previous study indicates that wastewater becomes more biodegradable by progressing the UV/H2O2 process due to the breakdown of polymer molecules, which reduces their molecular weight and makes them more consumable for biomass.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Reference76 articles.

1. PVA, PVA Blends, and Their Nanocomposites for Biodegradable Packaging Application;Abdullah;Polym-Plast. Technol. Eng.,2017

2. Assessing Biodegradability of Plastics Based on Poly(Vinyl Alcohol) and Protein Wastes;Hoffmann;Polym. Degrad. Stab.,2003

3. Development of Novel Bacterial Strains for Enhanced of Plastic Polymers by Protoplast;Patil;Asian J. Microbiol. Biotechnol. Environ. Sci.,2016

4. Biological Degradation of Plastics: A Comprehensive Review;Shah;Biotechnol. Adv.,2008

5. Biodegradable Polymers;Vroman;Materials,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3