Improved Straw Decomposition Products Promote Peanut Growth by Changing Soil Chemical Properties and Microbial Diversity

Author:

Liu Yaxin1,Wu Meng12,Liu Jia3,Li Daming4,Liu Xiaoli1,Chen Ling1,Guo Xi5ORCID,Liu Ming12

Affiliation:

1. State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Chuangyou Road 298, Nanjing 211135, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. National Engineering and Technology Research Center for Red Soil Improvement, Soil and Fertilizer & Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China

4. Jiangxi Institute of Red Soil & Germplasm Resource, Nanchang 330029, China

5. Key Laboratory of Arable Land Improvement and Quality Improvement of Jiangxi Province, Nanchang 330045, China

Abstract

The ameliorative effects of straw decomposition products on soil acidification have been extensively studied. However, the impact of chemically treated straw decomposition products on crop productivity and the underlying microbial mechanisms remain unclear. This study aimed to investigate the effects of two dosages of Ca(OH)2-treated straw decomposition products of peanuts on red soil acidity, fertility, and bacterial and fungal diversity through a pot experiment. The pot experiment included four treatments: chemical nitrogen, phosphorus, and potassium (NPK) fertilization alone (CK), NPK chemical fertilization combined with peanut straw decomposition products (PS), NPK chemical fertilization combined with 4% Ca(OH)2-treated peanut straw decomposition products (PS4Ca), and NPK chemical fertilization combined with 8% Ca(OH)2-treated straw decomposition products (PS8Ca). High-throughput sequencing was performed to investigate the effects of these treatments on soil microbial diversity. The treatments with PS, PS4Ca, and PS8Ca significantly increased soil pH, exchangeable base cations, and nutrient content, whereas they decreased the exchangeable acid, especially exchangeable aluminum. The peanut growth improved substantially with the application of straw decomposition products. Specifically, PS4Ca significantly increased the Shannon and Richness indices of fungi. The principal coordinate analysis showed that the soil microbial communities in the straw decomposition product treatments were significantly different from CK. Linear discriminant analysis effect size identified unique bacteria and fungi between treatments. The Mantel test indicated that exchangeable base cations and pH were significantly positively correlated with bacterial communities, whereas available potassium was positively correlated with fungal communities. The partial least squares path modeling revealed that the bacterial communities positively and directly affected all peanut agronomic traits. In contrast, the fungal communities had a negative and direct effect only on peanut 100-pod weight. Therefore, adding Ca(OH)2-treated straw decomposition products could effectively improve crop productivity by alleviating soil acidification, increasing soil nutrients, and subsequently changing microorganisms.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Key Research and Development Program of Jiangxi Province

Jinggangshan Agricultural Hi-tech District Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3