Presence of Antimicrobial-Resistant Bacteria and Resistance Genes in Soil Exposed to Wastewater Treatment Plant Effluent

Author:

Franklin Alison M.1ORCID,Kariyawasam Subhashinie2,Andrews Danielle M.1ORCID,McLain Jean E.3ORCID,Watson John E.1ORCID

Affiliation:

1. Department of Ecosystem Science and Management, The Pennsylvania State University, 116 ASI Building, University Park, PA 16802, USA

2. Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, 115 Henning Building, University Park, PA 16802, USA

3. Department of Environmental Science, University of Arizona, 429 Shantz Building, Tucson, AZ 85719, USA

Abstract

Antimicrobial resistance (AMR) has become a world-wide health issue, and anthropogenic antibiotics entering the environment is cause for concern with regard to impacts on environmental bacteria. As water resources have become scarcer, reuse of wastewater treatment plant (WWTP) effluent has increased, creating a conduit for environmental antibiotic pollution. The aim of this study was to determine the impact of spray-irrigating effluent on the incidence of AMR in soil organisms in agricultural lands (Astronomy Site, Pennsylvania State University). This study performed culture work to assess resistance of Gram-negative and Gram-positive soil bacteria to four antibiotics (sulfamethoxazole, trimethoprim, ciprofloxacin, and ampicillin) and molecular work (qPCR) to quantify genes associated with AMR (sulI, sulII, ermB, and intI1). Compared to a control site, Gram-negative bacteria at the Astronomy Site appeared to have increased resistance to sulfamethoxazole and trimethoprim. Higher numbers of resistance genes by depth (below 35 cm) and by location were consistently observed at the Astronomy Site with copy numbers of some genes up to 106-fold higher than the control site. Increased quantities of sulI and intI1 in the top 0–5 cm of the soil profile appeared to be dependent upon the amount of effluent irrigation received, whereas the presence of sulII and ermB showed the opposite patterns. Overall, long-term reuse of WWTP effluent to spray irrigate cropped lands does appear to alter and possibly increase AMR in soil environments; however, additional work is necessary to determine potential impacts on human, wildlife, plant, and soil health.

Funder

The Pennsylvania State University’s Office of Physical Plant and Regional Research Projects

Panta Rhei Research Initiative of the International Association of Hydrological Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3