Automated Filtering of Multibeam Water-Column Data to Detect Relative Abundance of Giant Kelp (Macrocystis pyrifera)

Author:

Schimel Alexandre C. G.ORCID,Brown Craig J.,Ierodiaconou DanielORCID

Abstract

Modern multibeam echosounders can record backscatter data returned from the water above the seafloor. These water-column data can potentially be used to detect and map aquatic vegetation such as kelp, and thus contribute to improving marine habitat mapping. However, the strong sidelobe interference noise that typically contaminates water-column data is a major obstacle to the detection of targets lying close to the seabed, such as aquatic vegetation. This article presents an algorithm to filter the noise and artefacts due to interference from the sidelobes of the receive array by normalizing the slant-range signal in each ping. To evaluate the potential of the filtered data for the detection of aquatic vegetation, we acquired a comprehensive water-column dataset over a controlled experimental site. The experimental site was a transplanted patch of giant kelp (Macrocystis pyrifera) forest of known biomass and spatial configuration, obtained by harvesting several individuals from a nearby forest, measuring and weighing them, and arranging them manually on an area of seafloor previously bare. The water-column dataset was acquired with a Kongsberg EM 2040 C multibeam echosounder at several frequencies (200, 300, and 400 kHz) and pulse lengths (25, 50, and 100 μs). The data acquisition process was repeated after removing half of the plants, to simulate a thinner forest. The giant kelp plants produced evident echoes in the water-column data at all settings. The slant-range signal normalization filter greatly improved the visual quality of the data, but the filtered data may under-represent the true amount of acoustic energy in the water column. Nonetheless, the overall acoustic backscatter measured after filtering was significantly lower, by 2 to 4 dB on average, for data acquired over the thinned forest compared to the original experiment. We discuss the implications of these results for the potential use of multibeam echosounder water-column data in marine habitat mapping.

Funder

Ministry of Business, Innovation and Employment

Department of Environment, Land, Water and Planning, State Government of Victoria

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference56 articles.

1. Frontiers in Seafloor Mapping and Visualization

2. Backscatter Measurements by Seafloor-Mapping Sonars; Guidelines and Recommendations. Technical Report https://niwa.co.nz/static/BWSG_REPORT_MAY2015_web.pdf

3. A review of oceanographic applications of water column data from multibeam echosounders

4. Ecology of Kelp Communities

5. Kelp forest ecosystems: biodiversity, stability, resilience and future

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3