The Multifrequency Future for Remote Sensing of Sea Surface Salinity from Space

Author:

Le Vine David M.ORCID,Dinnat Emmanuel P.ORCID

Abstract

Passive microwave remote sensing of sea surface salinity from space is done with measurements in the 27 MHz wide spectral window at 1.413 GHz (L-band) which is protected for passive use only. The frequency, 1.413 GHz, is near the peak in sensitivity to changes in salinity and modern L-band instruments, such as the radiometers on SMOS and Aquarius, have demonstrated the feasibility of monitoring surface salinity from space. They have also demonstrated the need for better accuracy, especially in cold water. Proposals to improve accuracy have largely involved adding more frequencies. For example, adding higher frequencies to improve the correction for sea surface temperature and lower frequencies to improve the sensitivity to salinity in cold water. These strategies involve trade-offs, some obvious such as the effects of interference outside the protected band and loss of spatial resolution at lower frequencies, but some are more subtle because of the interdependence of the measurement on other parameters of the ocean surface, in particular, the interdependence of salinity, water temperature and roughness (wind speed). The objective of this manuscript is to describe these interdependencies in a quantitative way with documented assumptions to support the design of future instruments for remote sensing of salinity.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3