Abstract
Backscattering coefficients of Sentinel-1 synthetic aperture radar (SAR) data of drifting multi-year sea ice in the western Beaufort Sea during the transition period between the end of melting and onset of freeze-up are analyzed, in terms of the incidence angle dependence and temporal variation. The mobile sea ice surface is tracked down in a 1 km by 1 km region centered at a GPS tracker, which was installed during a field campaign in August 2019. A total of 24 Sentinel-1 images spanning 17 days are used and the incidence angle dependence in HH- and HV-polarization are −0.24 dB/deg and −0.10 dB/deg, respectively. Hummocks and recently frozen melt ponds seem to cause the mixture behavior of surface and volume scattering. The normalized backscattering coefficients in HH polarization gradually increased in time at a rate of 0.15 dB/day, whereas the HV-polarization was relatively flat. The air temperature from the ERA5 hourly reanalysis data has a strong negative relation with the increasing trend of the normalized backscattering coefficients in HH-polarization. The result of this study is expected to complement other previous studies which focused on winter or summer seasons in other regions of the Arctic Ocean.
Funder
Korea Polar Research Institute
Subject
General Earth and Planetary Sciences
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献