Democratic Republic of the Congo Tropical Forest Canopy Height and Aboveground Biomass Estimation with Landsat-8 Operational Land Imager (OLI) and Airborne LiDAR Data: The Effect of Seasonal Landsat Image Selection

Author:

Kashongwe Herve B.,Roy David P.ORCID,Bwangoy Jean Robert B.

Abstract

Inventories of tropical forest aboveground biomass (AGB) are often imprecise and sparse. Increasingly, airborne Light Detection And Ranging (LiDAR) and satellite optical wavelength sensor data are used to map tree height and to estimate AGB. In the tropics, cloud cover is particularly prevalent and so several years of satellite observations must be considered. This may reduce mapping accuracy because of seasonal and inter-annual changes in the forest reflectance. In this paper, the sensitivity of airborne LiDAR and Landsat-8 Operational Land Imager (OLI) based dominant canopy height and AGB 30 m mapping is assessed with respect to the season of Landsat acquisition for a ~10,000 Km2 tropical forest area in the Democratic Republic of the Congo. A random forest regression estimator is used to predict and assess the 30 m dominant canopy height using LiDAR derived test and training data. The AGB is mapped using an allometric model parameterized with the dominant canopy height and is assessed by comparison with field based 30 m AGB estimates. Experiments are undertaken independently using (i) only a wet season Landsat-8 image, (ii) only a dry season Landsat-8 image, and (iii) both Landsat-8 images. At the study area level there is little reported sensitivity to the season of Landsat image used. The mean dominant canopy height and AGB values are similar between seasons, within 0.19 m and 5 Mg ha−1, respectively. The mapping results are improved when both Landsat-8 images are used with Root Mean Square Error (RMSE) values that correspond to 18.8% of the mean study area mapped tree height (20.4 m) and to 41% of the mean study area mapped AGB (204 Mg ha−1). The mean study area mapped AGB is similar to that reported in other Congo Basin forest studies. The results of this detailed study are illustrated and the implications for tropical forest tree height and AGB mapping are discussed.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3