Abstract
Hyperspectral image (HSI) classification accuracy has been greatly improved by employing deep learning. The current research mainly focuses on how to build a deep network to improve the accuracy. However, these networks tend to be more complex and have more parameters, which makes the model difficult to train and easy to overfit. Therefore, we present a lightweight deep convolutional neural network (CNN) model called S2FEF-CNN. In this model, three S2FEF blocks are used for the joint spectral–spatial features extraction. Each S2FEF block uses 1D spectral convolution to extract spectral features and 2D spatial convolution to extract spatial features, respectively, and then fuses spectral and spatial features by multiplication. Instead of using the full connected layer, two pooling layers follow three blocks for dimension reduction, which further reduces the training parameters. We compared our method with some state-of-the-art HSI classification methods based on deep network on three commonly used hyperspectral datasets. The results show that our network can achieve a comparable classification accuracy with significantly reduced parameters compared to the above deep networks, which reflects its potential advantages in HSI classification.
Subject
General Earth and Planetary Sciences
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献