Water Abundance Evaluation of Aquifer Using GA-SVR-BP: A Case Study in the Hongliulin Coal Mine, China

Author:

Wang Qiqing1,Han Yanbo1,Zhao Liguo2,Li Wenping1

Affiliation:

1. School of Resources and Geoscience, China University of Mining and Technology, Xuzhou 221116, China

2. National Investment Hami Energy Development Co., Ltd., China Coal Energy Group Co., Ltd., Hami 839000, China

Abstract

At present, coal accounts for more than 56% of China’s primary energy consumption and will continue to dominate for a long time in the future. With the continuous expansion of the mining intensity and scale of Jurassic coal resources in Northwestern China, the problem of mine roof water disasters is becoming increasingly serious. The degree of harm is related to the hydrogeological structure of the overlying strata of the coal seam. Reasonable and effective prediction and evaluation of the water abundance of the coal seam roof aquifer is conducive to making scientific decisions on the prevention and control of roof water disasters, so as to achieve safe mining. In order to solve the problem of water abundance evaluation in mining areas lacking hydrological holes, taking the Hongliulin coal mine in Shennan mining area as an example, four main control factors for water abundance were selected: sandstone thickness, core recovery ratio, brittle rock thickness ratio, and flushing fluid consumption. Combined with unit water inflow and multiple factor comprehensive analysis, a back propagation (BP) artificial neural network and support vector machine regression (SVR) were introduced into water abundance evaluation. The reciprocal variance method was used to predict the measured unit water inflow. Finally, according to the “Detailed Rules for Coal Mine Water Prevention and Control”, the water abundance of aquifers was classified to verify the accuracy of the model and partition the water abundance of the study area. The results indicate that, based on the predicted results of unit water inflow, out of 37 borehole data, 22 weak water abundance holes and 15 medium water abundance holes were evaluated correctly, verifying their applicability. The study area was generally weak in water abundance, with two grades of medium and weak. The medium water abundance area was mainly located in the north and south of the study area, and the weak water abundance area was mainly located in the east and west. It can be seen that this evaluation model has certain applicability for evaluating the water abundance of coal seam roofs. It is of great significance, especially for the evaluation of water abundance in mining areas where hydrological holes are lacking.

Funder

National Natural Science Foundation of China

project of “Enlisting and Leading” of China Coal

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference36 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3