An Indirect Inversion Scheme for Retrieving Toxic Metal Concentrations Using Ground-Based Spectral Data in a Reclamation Coal Mine, China

Author:

Su Yi,Guo BinORCID,Lei Yongzhi,Zhang Dingming,Guo Xianan,Suo Liang,Zhao YonghuaORCID,Bian Yi

Abstract

A reclamation coal mine in Baishui County of Shaanxi Province, China, was selected as the study area to develop a fast survey method for estimating soil heavy metal concentrations using spectral data. A portable object spectrometer manufactured by Analytical Spectral Devices (ASD) was used to measure soil spectral reflectance, and an X-ray fluorescence device was utilized to obtain the content of heavy metals. The Savitzky-Golay filter, first derivative reflectance (FDR), second derivative reflectance (SDR), continuum removal (CR), and continuous wavelet transform (CWT) were used to transform the original reflectance (OR) spectra for enhancing the spectral characteristics, respectively. Furthermore, correlation analysis was introduced to determine the characteristic bands and the correlations of heavy metals. Partial least squares regression (PLSR), extremely learning machine (ELM), random forest (RF), and support vector machine (SVM) were implemented for quantitatively determining relations between heavy metal contents and spectral reflectance. The outcomes demonstrated that the spectral transformation methods could effectively capture the characteristic bands and increase the relations between heavy metal contents and spectral reflectance. The relation between Fe and Ni was close with a relatively high correlation coefficient (r = 0.741). RF combined with CWT at the decomposition scales of 9 demonstrated the best performance with the highest Rv2 (0.71) and the lowest RMSEv (1019.1 mg/kg) for inferring Fe content. Ni content was inferred based on the close relationship between Fe and Ni. The result of RF was better than other methods with the highest Rv2 (0.69) and the lowest RMSEv (1.94 mg/kg) for estimating Ni concentration. Therefore, the RF model was chosen for mapping Fe and Ni contents in the study area. The present study revealed that the indirect inversion methods using spectral data can be effectively used to predict heavy metal concentrations. The outcomes supply a new perspective for retrieving heavy metal content based on hyperspectral remotely sensed technology.

Funder

The Natural Science Foundation of Shaanxi Province

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3