Improved Spatial Knowledge Acquisition through Sensory Augmentation

Author:

Schmidt Vincent1ORCID,König Sabine U.1ORCID,Dilawar Rabia1ORCID,Sánchez Pacheco Tracy1ORCID,König Peter12ORCID

Affiliation:

1. Neurobiopsychology Group, Institute of Cognitive Science, University of Osnabrück, Wachsbleiche 27, 49090 Osnabrück, Germany

2. Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany

Abstract

Sensory augmentation provides novel opportunities to broaden our knowledge of human perception through external sensors that record and transmit information beyond natural perception. To assess whether such augmented senses affect the acquisition of spatial knowledge during navigation, we trained a group of 27 participants for six weeks with an augmented sense for cardinal directions called the feelSpace belt. Then, we recruited a control group that did not receive the augmented sense and the corresponding training. All 53 participants first explored the Westbrook virtual reality environment for two and a half hours spread over five sessions before assessing their spatial knowledge in four immersive virtual reality tasks measuring cardinal, route, and survey knowledge. We found that the belt group acquired significantly more accurate cardinal and survey knowledge, which was measured in pointing accuracy, distance, and rotation estimates. Interestingly, the augmented sense also positively affected route knowledge, although to a lesser degree. Finally, the belt group reported a significant increase in the use of spatial strategies after training, while the groups’ ratings were comparable at baseline. The results suggest that six weeks of training with the feelSpace belt led to improved survey and route knowledge acquisition. Moreover, the findings of our study could inform the development of assistive technologies for individuals with visual or navigational impairments, which may lead to enhanced navigation skills and quality of life.

Funder

EU Horizon 2020 (MSCDA) research and innovation program

Publisher

MDPI AG

Subject

General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3