Independent Components of EEG Activity Correlating with Emotional State

Author:

Maruyama Yasuhisa,Ogata Yousuke,Martínez-Tejada Laura A.ORCID,Koike Yasuharu,Yoshimura NatsueORCID

Abstract

Among brain-computer interface studies, electroencephalography (EEG)-based emotion recognition is receiving attention and some studies have performed regression analyses to recognize small-scale emotional changes; however, effective brain regions in emotion regression analyses have not been identified yet. Accordingly, this study sought to identify neural activities correlating with emotional states in the source space. We employed independent component analysis, followed by a source localization method, to obtain distinct neural activities from EEG signals. After the identification of seven independent component (IC) clusters in a k-means clustering analysis, group-level regression analyses using frequency band power of the ICs were performed based on Russell’s valence–arousal model. As a result, in the regression of the valence level, an IC cluster located in the cuneus predicted both high- and low-valence states and two other IC clusters located in the left precentral gyrus and the precuneus predicted the low-valence state. In the regression of the arousal level, the IC cluster located in the cuneus predicted both high- and low-arousal states and two posterior IC clusters located in the cingulate gyrus and the precuneus predicted the high-arousal state. In this proof-of-concept study, we revealed neural activities correlating with specific emotional states across participants, despite individual differences in emotional processing.

Funder

Precursory Research for Embryonic Science and Technology

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3