Immunohistochemical Evidence for Glutamatergic Regulation of Nesfatin-1 Neurons in the Rat Hypothalamus

Author:

Gok Yurtseven Duygu,Serter Kocoglu Sema,Minbay Zehra,Eyigor OzhanORCID

Abstract

Nesfatin-1, identified as an anorexigenic peptide, regulates the energy metabolism by suppressing food intake. The majority of nesfatin-1-synthesizing neurons are concentrated in various hypothalamic nuclei, especially in the supraoptic (SON), arcuate (ARC) and paraventricular nuclei (PVN). We tested the hypothesis that the glutamatergic system regulates nesfatin-1 neurons through glutamate receptors. Therefore, the first aim of the proposed studies was to examine effects of different glutamate agonists in the activation of nesfatin-1 neurons using c-Fos double immunohistochemical labeling. Experimental groups were formed containing male and female rats which received intraperitoneal injections of glutamate agonists kainic acid, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) while the control rats received vehicle. The significant increase in the number of c-Fos-expressing nesfatin-1 neurons after agonist injections were observed both in female and male subjects and some of these effects were found to be sexually dimorphic. In addition, treatment with specific glutamate antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) or dizocilpine (MK-801) before each of the three agonist injections caused a statistically significant reduction in the number of activated nesfatin-1 neurons in the hypothalamic nuclei including supraoptic, paraventricular and arcuate nuclei. The second aim of the study was to determine the expression of glutamate receptor subunit proteins in the nesfatin-1 neurons by using a double immunofluorescence technique. The results showed that the glutamate receptor subunits, which may form homomeric or heteromeric functional receptor channels, were expressed in the nesfatin-1 neurons. In conclusion, the results of this study suggest that nesfatin-1 neurons respond to glutamatergic signals in the form of neuronal activation and that the glutamate receptors that are synthesized by nesfatin-1 neurons may participate in the glutamatergic regulation of these neurons.

Funder

Scientific and Technological Research Council of Turkey

Publisher

MDPI AG

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3