Research on Fatigue Driving Detection Technology Based on CA-ACGAN

Author:

Ye Han1,Chen Ming1ORCID,Feng Guofu1

Affiliation:

1. College of Information, Shanghai Ocean University, No. 999 Huchenghuan Road, Shanghai 201306, China

Abstract

Driver fatigue represents a significant peril to global traffic safety, necessitating the advancement of potent fatigue monitoring methodologies to bolster road safety. This research introduces a conditional generative adversarial network with a classification head that integrates convolutional and attention mechanisms (CA-ACGAN) designed for the precise identification of fatigue driving states through the analysis of electroencephalography (EEG) signals. First, this study constructed a 4D feature data model capable of mirroring drivers’ fatigue state, meticulously analyzing the EEG signals’ frequency, spatial, and temporal dimensions. Following this, we present the CA-ACGAN framework, a novel integration of attention schemes, the bottleneck residual block, and the Transformer element. This integration was designed to refine the processing of EEG signals significantly. In utilizing a conditional generative adversarial network equipped with a classification header, the framework aims to distinguish fatigue states effectively. Moreover, it addresses the scarcity of authentic data through the generation of superior-quality synthetic data. Empirical outcomes illustrate that the CA-ACGAN model surpasses various extant methods in the fatigue detection endeavor on the SEED-VIG public dataset. Moreover, juxtaposed with leading-edge GAN models, our model exhibits an efficacy in in producing high-quality data that is clearly superior. This investigation confirms the CA-ACGAN model’s utility in fatigue driving identification and suggests fresh perspectives for deep learning applications in time series data generation and processing.

Funder

Guangdong Province Key Field R&D Plan Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3