Abstract
The classification recognition rate of motor imagery is a key factor to improve the performance of brain–computer interface (BCI). Thus, we propose a feature extraction method based on discrete wavelet transform (DWT), empirical mode decomposition (EMD), and approximate entropy. Firstly, the electroencephalogram (EEG) signal is decomposed into a series of narrow band signals with DWT, then the sub-band signal is decomposed with EMD to get a set of stationary time series, which are called intrinsic mode functions (IMFs). Secondly, the appropriate IMFs for signal reconstruction are selected. Thus, the approximate entropy of the reconstructed signal can be obtained as the corresponding feature vector. Finally, support vector machine (SVM) is used to perform the classification. The proposed method solves the problem of wide frequency band coverage during EMD and further improves the classification accuracy of EEG signal motion imaging,
Funder
National Natural Science Foundation of China
Cited by
95 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献