Author:
Vallee Kaylie-Anna Juliette,Fields Jerel Adam
Abstract
Therapeutic interventions are greatly needed for age-related neurodegenerative diseases. Astrocytes regulate many aspects of neuronal function including bioenergetics and synaptic transmission. Reactive astrocytes are implicated in neurodegenerative diseases due to their pro-inflammatory phenotype close association with damaged neurons. Thus, strategies to reduce astrocyte reactivity may support brain health. Caloric restriction and a ketogenic diet limit energy production via glycolysis and promote oxidative phosphorylation, which has gained traction as a strategy to improve brain health. However, it is unknown how caloric restriction affects astrocyte reactivity in the context of neuroinflammation. We investigated how a caloric restriction mimetic and glycolysis inhibitor, 2-deoxyglucose (2-DG), affects interleukin 1β-induced inflammatory gene expression in human astrocytes. Human astrocyte cultures were exposed to 2-DG or vehicle for 24 h and then to recombinant IL-1β for 6 or 24 h to analyze mRNA and protein expression, respectively. Gene expression levels of proinflammatory genes (complement component 3, IL-1β, IL6, and TNFα) were analyzed by real-time PCR, immunoblot, and immunohistochemistry. As expected, IL-1β induced elevated levels of proinflammatory genes. 2-DG reversed this effect at the mRNA and protein levels without inducing cytotoxicity. Collectively, these data suggest that inhibiting glycolysis in human astrocytes reduces IL-1β-induced reactivity. This finding may lead to novel therapeutic strategies to limit inflammation and enhance bioenergetics toward the goal of preventing and treating neurodegenerative diseases.
Funder
National Institute on Aging
National Institute of Mental Health
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献