Spike-Dependent Dynamic Partitioning of the Locus Coeruleus Network through Noradrenergic Volume Release in a Simulation of the Nucleus Core

Author:

Baral Shristi,Hosseini Hassan,More Kaushik,Fabrin Thomaz M. C.,Braun Jochen,Prigge Matthias

Abstract

The Locus coeruleus (LC) modulates various neuronal circuits throughout the brain. Its unique architectural organization encompasses a net of axonal innervation that spans the entire brain, while its somatic core is highly compact. Recent research revealed an unexpected cellular input specificity within the nucleus that can give rise to various network states that either broadcast norepinephrine signals throughout the brain or pointedly modulate specific brain areas. Such adaptive input–output functions likely surpass our existing network models that build upon a given synaptic wiring configuration between neurons. As the distances between noradrenergic neurons in the core of the LC are unusually small, neighboring neurons could theoretically impact each other via volume transmission of NE. We therefore set out to investigate if such interaction could be mediated through noradrenergic alpha2-receptors in a spiking neuron model of the LC. We validated our model of LC neurons through comparison with experimental patch-clamp data and identified key variables that impact alpha2-mediated inhibition of neighboring LC neurons. Our simulation confirmed a reliable autoinhibition of LC neurons after episodes of high neuronal activity that continue even after neuronal activity subsided. Additionally, dendro-somatic synapses inhibited spontaneous spiking in the somatic compartment of connected neurons in our model. We determined the exact position of hundreds of LC neurons in the mouse brain stem via a tissue clearing approach and, based on this, further determined that 25 percent of noradrenergic neurons have a neighboring LC neuron within less than a 25-micrometer radius. By modeling NE diffusion, we estimated that more than 15 percent of the alpha2-adrenergic receptors fraction can bind NE within such a diffusion radius. Our spiking neuron model of LC neurons predicts that repeated or long-lasting episodes of high neuronal activity induce partitioning of the gross LC network and reduce the spike rate in neighboring neurons at distances smaller than 25 μm. As these volume-mediating neighboring effects are challenging to test with the current methodology, our findings can guide future experimental approaches to test this phenomenon and its physiological consequences.

Publisher

MDPI AG

Subject

General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3