Abstract
The architecture of the human connectome changes with brain maturation. Pivotal to understanding these changes is defining developmental periods when transitions in network topology occur. Here, using 110 resting-state functional connectivity data sets from healthy fetuses between 19 and 40 gestational weeks, we estimated optimal gestational-age (GA) cut points for dichotomizing fetuses into ‘young’ and ‘old’ groups based on global network features. We computed the small-world index, normalized clustering and path length, global and local efficiency, and modularity from connectivity matrices comprised 200 regions and their corresponding pairwise connectivity. We modeled the effect of GA at scan on each metric using separate repeated-measures generalized estimating equations. Our modeling strategy involved stratifying fetuses into ‘young’ and ‘old’ based on the scan occurring before or after a selected GA (i.e., 28 to 33). We then used the quasi-likelihood independence criterion statistic to compare model fit between ‘old’ and ‘young’ cohorts and determine optimal cut points for each graph metric. Trends for all metrics, except for global efficiency, decreased with increasing gestational age. Optimal cut points fell within 30–31 weeks for all metrics coinciding with developmental events that include a shift from endogenous neuronal activity to sensory-driven cortical patterns.
Funder
National Heart, Lung, and Blood Institute
Canadian Institutes of Health Research
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献