Ouabain-Induced Gene Expression Changes in Human iPSC-Derived Neuron Culture Expressing Dopamine and cAMP-Regulated Phosphoprotein 32 and GABA Receptors

Author:

Lopachev Alexander V.,Lagarkova Maria A.ORCID,Lebedeva Olga S.,Ezhova Margarita A.,Kazanskaya Rogneda B.,Timoshina Yulia A.,Khutorova Anastasiya V.,Akkuratov Evgeny E.,Fedorova Tatiana N.,Gainetdinov Raul R.

Abstract

Cardiotonic steroids (CTS) are specific inhibitors and endogenous ligands of a key enzyme in the CNS—the Na+, K+-ATPase, which maintains and creates an ion gradient on the plasma membrane of neurons. CTS cause the activation of various signaling cascades and changes in gene expression in neurons and other cell types. It is known that intracerebroventricular injection of cardiotonic steroid ouabain causes mania-like behavior in rodents, in part due to activation of dopamine-related signaling cascades in the dopamine and cAMP-regulated phosphoprotein 32 (DARPP-32) expressing medium spiny neurons in the striatum. Dopaminergic projections in the striatum innervate these GABAergic medium spiny neurons. The objective of this study was to assess changes in the expression of all genes in human iPSC-derived expressing DARPP-32 and GABA receptors neurons under the influence of ouabain. We noted a large number of statistically significant upregulated and downregulated genes after a 16-h incubation with non-toxic concentration (30 nM) of ouabain. These changes in the transcriptional activity were accomplished with activation of MAP-kinase ERK1/2 and transcriptional factor cAMP response element-binding protein (CREB). Thus, it can be concluded that 30 nM ouabain incubated for 16 h with human iPSC-derived expressing DARPP-32 and GABA receptors neurons activates genes associated with neuronal maturation and synapse formation, by increasing the expression of genes associated with translation, vesicular transport, and increased electron transport chain function. At the same time, the expression of genes associated with proliferation, migration, and early development of neurons decreases. These data indicate that non-toxic concentrations of ouabain may induce neuronal maturation, neurite growth, and increased synaptogenesis in dopamine-receptive GABAergic neurons, suggesting formation of plasticity and the establishment of new neuronal junctions.

Funder

Russian Foundation for Basic Research

Saint Petersburg State University

Publisher

MDPI AG

Subject

General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3