Task and Resting-State Functional Connectivity Predict Driving Violations

Author:

Ju Uijong1ORCID

Affiliation:

1. Department of Information Display, Kyung Hee University, Seoul 02447, Republic of Korea

Abstract

Aberrant driving behaviors cause accidents; however, there is a lack of understanding of the neural mechanisms underlying these behaviors. To address this issue, a task and resting-state functional connectivity was used to predict aberrant driving behavior and associated personality traits. The study included 29 right-handed participants with driving licenses issued for more than 1 year. During the functional magnetic resonance imaging experiment, participants first recorded their resting state and then watched a driving video while continuously rating the risk and speed on each block. Functional connectome-based predictive modeling was employed for whole brain tasks and resting-state functional connectivity to predict driving behavior (violation, error, and lapses), sensation-seeking, and impulsivity. Resting state and task-based functional connectivity were found to significantly predict driving violations, with resting state significantly predicting lapses and task-based functional connectivity showing a tendency to predict errors. Conversely, neither impulsivity nor sensation-seeking was associated with functional connectivity. The results suggest a significant association between aberrant driving behavior, but a nonsignificant association between impulsivity and sensation-seeking, and task-based or resting state functional connectivity. This could provide a deeper understanding of the neural processing underlying reckless driving that may ultimately be used to prevent accidents.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Graph-based Driving Style Recognition from Electrophysiological Analysis during Car Following;2023 3rd International Conference on Digital Society and Intelligent Systems (DSInS);2023-11-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3