Abstract
Nicotinic acetylcholine receptors (nAChRs), particularly the α7 nAChR, play a critical role in neuroinflammation and microglial activation associated with major depressive disorder (MDD). Microglial quinolinic acid (QUIN), which is synthesized by 3-hydroxyanthranilic acid dioxygenase (HAAO), is an N-methyl-D-aspartate (NMDA) receptor agonist and has been implicated in the development of MDD-related symptoms. In the present study, we assessed the effects of PNU120596, an α7 nAChR positive allosteric modulator (PAM), on HAAO expression and QUIN formation in the hippocampus and prefrontal cortex. We also investigated the effects of memantine, an NMDA receptor antagonist, alone and in combination with PNU120596 on cognitive deficit and depressive-like behaviors induced by lipopolysaccharide (LPS) in mice using the Y-maze and forced swim test, respectively. LPS (1 mg/kg, i.p.) elevated HAAO expression and QUIN formation in the hippocampus and prefrontal cortex, which were reduced with pretreatment with PNU120596 (4 mg/kg, i.p.). Furthermore, memantine (1 or 3 mg/kg, i.p.) prevented the cognitive deficit and depressive-like behaviors induced by LPS in mice. Together, these results suggest that the antidepressant-like effects of PNU120596 are mediated by attenuation of LPS-induced QUIN formation. Therefore, α7 nAChR PAM could be a potential therapeutic candidate for MDD associated with neurotoxic glutamatergic transmission.
Funder
The South Dakota State University (SDSU) Research Foundation (S.R.), Department of Pharmaceutical Sciences of SDSU
The College of Pharmacy
Department of Veterans Affairs Merit Review Award
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献