Cerebral Cortex Activation and Gait Performance between Healthy and Prefrail Older Adults during Cognitive and Walking Tasks

Author:

Fan Weichao12,Xiao Chongwu1,He Longlong1,Chen Ling1,Qu Hang1,Yao Qiuru12,Li Gege1,Hu Jinjing1,Zou Jihua134,Zeng Qing1,Huang Guozhi123

Affiliation:

1. Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China

2. School of Nursing, Southern Medical University, Guangzhou 510280, China

3. School of Rehabilitation Medicine, Southern Medical University, Guangzhou 510280, China

4. Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong 999077, China

Abstract

Pre-frailty is a transitional stage between health and frailty. Previous studies have demonstrated that individuals with pre-frailty experience declines in cognitive and gait performances compared with healthy individuals. However, the basic neural mechanism underlying this needs to be clarified. In this cross-sectional study, twenty-one healthy older adults and fifteen with pre-frailty underwent three conditions, including a single cognitive task (SC), single walking task (SW), and dual-task (DT), while cortical hemodynamic reactions were measured using functional near-infrared spectroscopy (fNIRS). The prefrail group (PG) showed a significantly lower activation of the left dorsolateral prefrontal cortex (L-DLPFC) than the healthy group (HG) when performing SC (p < 0.05). The PG showed a significantly lower Timed Up and Go test and step speed than the HG during SW (p < 0.05). The coefficient of variation (CV) of the step length of the PG was significantly higher than that of the HG when performing DT (p < 0.05). No significant correlation in cerebral cortex activation and gait parameters in the HG when performing SW and DT was noted (p > 0.05). Participants of the PG with a higher oxygenated area in the left anterior prefrontal cortex (L-APFC) had a lower step frequency during SW (r = −0.533, p = 0.041), and so did the following indicators of the PG during DT: L-APFC and step speed (r = −0.557, p = 0.031); right anterior prefrontal cortex and step speed (r = −0.610, p = 0.016); left motor cortex and step speed (r = −0.674, p = 0.006); step frequency (r = −0.656, p = 0.008); and step length (r = −0.535, p = 0.040). The negative correlations between the cerebral cortex and gait parameters of the PG indicated a neural compensatory effect of pre-frailty. Therefore, older adults with pre-frailty promote prefrontal activation to compensate for the impaired sensorimotor systems.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Health and Appropriate Technology Promotion Project of Guangdong Province

Publisher

MDPI AG

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3