Different Approximation Methods for Calculation of Integrated Information Coefficient in the Brain during Instrumental Learning

Author:

Nazhestkin IvanORCID,Svarnik OlgaORCID

Abstract

The amount of integrated information, Φ, proposed in an integrated information theory (IIT) is useful to describe the degree of brain adaptation to the environment. However, its computation cannot be precisely performed for a reasonable time for time-series spike data collected from a large count of neurons.. Therefore, Φ was only used to describe averaged activity of a big group of neurons, and the behavior of small non-brain systems. In this study, we reported on ways for fast and precise Φ calculation using different approximation methods for Φ calculation in neural spike data, and checked the capability of Φ to describe a degree of adaptation in brain neural networks. We show that during instrumental learning sessions, all applied approximation methods reflect temporal trends of Φ in the rat hippocampus. The value of Φ is positively correlated with the number of successful acts performed by a rat. We also show that only one subgroup of neurons modulates their Φ during learning. The obtained results pave the way for application of Φ to investigate plasticity in the brain during the acquisition of new tasks.

Funder

Russian Foundation for Basic Research

Publisher

MDPI AG

Subject

General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3