Abstract
Residual torque enhancement (rTE) is a history-dependent property of muscle, which results in an increase in steady-state isometric torque production following an active lengthening contraction as compared to a purely isometric (ISO) contraction at the same muscle length and level of activation. Once thought to be only an intrinsic property of muscle, recent evidence during voluntary contractions indicates a neuromechanical coupling between motor neuron excitability and the contractile state of the muscle. However, the mechanism by which this occurs has yet to be elucidated. The purpose of this study was to investigate inhibition arising from tendon-mediated feedback (e.g., Golgi tendon organ; GTO) through tendon electrical stimulation (TStim) in the ISO and rTE states during activation-matching and torque-matching tasks. Fourteen male participants (22 ± 2 years) performed 10 activation-matching contractions at 40% of their maximum tibialis anterior electromyography amplitude (5 ISO/5 rTE) and 10 torque-matching contractions at 40% of their maximum dorsiflexion torque (5 ISO/5 rTE). During both tasks, 10 TStim were delivered during the isometric steady state of all contractions, and the resulting tendon-evoked inhibitory reflexes were averaged and analyzed. Reflex amplitude increased by ~23% in the rTE state compared to the ISO state for the activation-matching task, and no differences were detected for the torque-matching task. The current data indicate an important relationship between afferent feedback in the torque-enhanced state and voluntary control of submaximal contractions. The history-dependent properties of muscle is likely to alter motor neuron excitability through modifications in tension- or torque-mediated afferent feedback arising from the tendon.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献