Investigating Parietal and Premotor Influence on Motor Cortical Excitability Associated with Visuomotor Associative Plasticity

Author:

Wolfe Paul J.,Kaethler Lynea B.,Staines W. Richard

Abstract

The brain changes in response to sensory signals it is exposed to. It has been shown that long term potentiation-like neuroplasticity can be experimentally induced via visual paired-associative stimulation (V-PAS). V-PAS combines afferent visual stimuli with a transcranial magnetic stimulation pulse to induce plasticity. Preparation of a reaching movement to generate activity in superior parietal occipital cortex (SPOC) was used in this study as an additional afferent contributor to modulate the resultant plasticity. We hypothesized that V-PAS with a reaching movement would induce greater cortical excitability than V-PAS alone and would exhibit facilitated SPOC to M1 projections. All four experiments enrolled groups of 10 participants to complete variations of V-PAS in a repeated measures design. SPOC to M1 projections facilitated motor cortex excitability following V-PAS regardless of intervention received. We did not observe evidence indicating extra afferent information provided an additive effect to participants. Investigation of PMd to M1 projections confirmed disinhibition and suggested interneuronal populations within M1 may be mechanistically involved. Future research should look to rule out the existence of an upper limit for effective afference during V-PAS and investigate the average influence of V-PAS on cortical excitability in the larger population.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3