Logistic Regression Algorithm Differentiates Gulf War Illness (GWI) Functional Magnetic Resonance Imaging (fMRI) Data from a Sedentary Control

Author:

Provenzano DestieORCID,Washington Stuart D.,Rao Yuan J.ORCID,Loew Murray,Baraniuk James N.

Abstract

Gulf War Illness (GWI) is a debilitating condition characterized by dysfunction of cognition, pain, fatigue, sleep, and diverse somatic symptoms with no known underlying pathology. As such, uncovering objective biomarkers such as differential regions of activity within a Functional Magnetic Resonance Imaging (fMRI) scan is important to enhance validity of the criteria for diagnosis. Symptoms are exacerbated by mild activity, and exertional exhaustion is a key complaint amongst sufferers. We modeled this exertional exhaustion by having GWI (n = 80) and sedentary control (n = 31) subjects perform submaximal exercise stress tests on two consecutive days. Cognitive differences were assessed by comparing fMRI scans performed during 2-Back working memory tasks before and after the exercise. Machine learning algorithms were used to identify differences in brain activation patterns between the two groups on Day 1 (before exercise) and Day 2 (after exercise). The numbers of voxels with t > 3.17 (corresponding to p < 0.001 uncorrected) were determined for brain regions defined by the Automated Anatomical Labeling (AAL) atlas. Data were divided 70:30 into training and test sets. Recursive feature selection identified twenty-nine regions of interest (ROIs) that significantly distinguished GWI from control on Day 1 and 28 ROIs on Day 2. Ten regions were present in both models between the two days, including right anterior insula, orbital frontal cortex, thalamus, bilateral temporal poles, and left supramarginal gyrus and cerebellar Crus 1. The models had 70% accuracy before exercise on Day 1 and 85% accuracy after exercise on Day 2, indicating the logistic regression model significantly differentiated subjects with GWI from the sedentary control group. Exercise caused changes in these patterns that may indicate the cognitive differences caused by exertional exhaustion. A second set of predictive models was able to classify previously identified GWI exercise subgroups START, STOPP, and POTS for both Days 1 and Days 2 with 67% and 69% accuracy respectively. This study was the first of its kind to differentiate GWI and the three sub-phenotypes START, STOPP, and POTS from a sedentary control using a logistic regression estimation method.

Funder

National Institute of Neurological Disorders and Stroke

Publisher

MDPI AG

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3