Identifying the Phenotypes of Diffuse Axonal Injury Following Traumatic Brain Injury

Author:

Krieg Justin L.1,Leonard Anna V.1,Turner Renée J.1,Corrigan Frances1

Affiliation:

1. Translational Neuropathology Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia

Abstract

Diffuse axonal injury (DAI) is a significant feature of traumatic brain injury (TBI) across all injury severities and is driven by the primary mechanical insult and secondary biochemical injury phases. Axons comprise an outer cell membrane, the axolemma which is anchored to the cytoskeletal network with spectrin tetramers and actin rings. Neurofilaments act as space-filling structural polymers that surround the central core of microtubules, which facilitate axonal transport. TBI has differential effects on these cytoskeletal components, with axons in the same white matter tract showing a range of different cytoskeletal and axolemma alterations with different patterns of temporal evolution. These require different antibodies for detection in post-mortem tissue. Here, a comprehensive discussion of the evolution of axonal injury within different cytoskeletal elements is provided, alongside the most appropriate methods of detection and their temporal profiles. Accumulation of amyloid precursor protein (APP) as a result of disruption of axonal transport due to microtubule failure remains the most sensitive marker of axonal injury, both acutely and chronically. However, a subset of injured axons demonstrate different pathology, which cannot be detected via APP immunoreactivity, including degradation of spectrin and alterations in neurofilaments. Furthermore, recent work has highlighted the node of Ranvier and the axon initial segment as particularly vulnerable sites to axonal injury, with loss of sodium channels persisting beyond the acute phase post-injury in axons without APP pathology. Given the heterogenous response of axons to TBI, further characterization is required in the chronic phase to understand how axonal injury evolves temporally, which may help inform pharmacological interventions.

Publisher

MDPI AG

Subject

General Neuroscience

Reference151 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3