Flexible Use of Spatial Frames of Reference for Object–Location Memory in Older Adults

Author:

Ladyka-Wojcik NataliaORCID,Olsen Rosanna K.,Ryan Jennifer D.ORCID,Barense Morgan D.

Abstract

In memory, representations of spatial features are stored in different reference frames; features relative to our position are stored egocentrically and features relative to each other are stored allocentrically. Accessing these representations engages many cognitive and neural resources, and so is susceptible to age-related breakdown. Yet, recent findings on the heterogeneity of cognitive function and spatial ability in healthy older adults suggest that aging may not uniformly impact the flexible use of spatial representations. These factors have yet to be explored in a precisely controlled task that explicitly manipulates spatial frames of reference across learning and retrieval. We used a lab-based virtual reality task to investigate the relationship between object–location memory across frames of reference, cognitive status, and self-reported spatial ability. Memory error was measured using Euclidean distance from studied object locations to participants’ responses at testing. Older adults recalled object locations less accurately when they switched between frames of reference from learning to testing, compared with when they remained in the same frame of reference. They also showed an allocentric learning advantage, producing less error when switching from an allocentric to an egocentric frame of reference, compared with the reverse direction of switching. Higher MoCA scores and better self-assessed spatial ability predicted less memory error, especially when learning occurred egocentrically. We suggest that egocentric learning deficits are driven by difficulty in binding multiple viewpoints into a coherent representation. Finally, we highlight the heterogeneity of spatial memory performance in healthy older adults as a potential cognitive marker for neurodegeneration, beyond normal aging.

Funder

National Sciences and Engineering Research Council Discovery Grant

Publisher

MDPI AG

Subject

General Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3