Profiling Somatosensory Impairment after Stroke: Characterizing Common “Fingerprints” of Impairment Using Unsupervised Machine Learning-Based Cluster Analysis of Quantitative Measures of the Upper Limb

Author:

Senadheera Isuru12ORCID,Larssen Beverley C.23ORCID,Mak-Yuen Yvonne Y. K.245,Steinfort Sarah24,Carey Leeanne M.24ORCID,Alahakoon Damminda1

Affiliation:

1. Centre for Data Analytics and Cognition, La Trobe Business School, La Trobe University, Melbourne, VIC 3086, Australia

2. Occupational Therapy, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC 3086, Australia

3. Department of Physical Therapy, University of British Columbia, Vancouver, BC V6T 1Z3, Canada

4. Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3086, Australia

5. Department of Occupational Therapy, St. Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia

Abstract

Altered somatosensory function is common among stroke survivors, yet is often poorly characterized. Methods of profiling somatosensation that illustrate the variability in impairment within and across different modalities remain limited. We aimed to characterize post-stroke somatosensation profiles (“fingerprints”) of the upper limb using an unsupervised machine learning cluster analysis to capture hidden relationships between measures of touch, proprioception, and haptic object recognition. Raw data were pooled from six studies where multiple quantitative measures of upper limb somatosensation were collected from stroke survivors (n = 207) using the Tactile Discrimination Test (TDT), Wrist Position Sense Test (WPST) and functional Tactile Object Recognition Test (fTORT) on the contralesional and ipsilesional upper limbs. The Growing Self Organizing Map (GSOM) unsupervised machine learning algorithm was used to generate a topology-preserving two-dimensional mapping of the pooled data and then separate it into clusters. Signature profiles of somatosensory impairment across two modalities (TDT and WPST; n = 203) and three modalities (TDT, WPST, and fTORT; n = 141) were characterized for both hands. Distinct impairment subgroups were identified. The influence of background and clinical variables was also modelled. The study provided evidence of the utility of unsupervised cluster analysis that can profile stroke survivor signatures of somatosensory impairment, which may inform improved diagnosis and characterization of impairment patterns.

Funder

National Health and Medical Research Council (NHMRC) of Australia Partnership

NHMRC Project

NHMRC Ideas grant

University of British Columbia Friedman Award for Scholars in Health

Publisher

MDPI AG

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3