Research Progress in Diffusion Spectrum Imaging

Author:

Sun Fenfen1,Huang Yingwen1,Wang Jingru1,Hong Wenjun2,Zhao Zhiyong3ORCID

Affiliation:

1. Center for Brain, Mind and Education, Shaoxing University, Shaoxing 312000, China

2. Department of Rehabilitation Medicine, Afiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China

3. Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China

Abstract

Studies have demonstrated that many regions in the human brain include multidirectional fiber tracts, in which the diffusion of water molecules within image voxels does not follow a Gaussian distribution. Therefore, the conventional diffusion tensor imaging (DTI) that hypothesizes a single fiber orientation within a voxel is intrinsically incapable of revealing the complex microstructures of brain tissues. Diffusion spectrum imaging (DSI) employs a pulse sequence with different b-values along multiple gradient directions to sample the diffusion information of water molecules in the entire q-space and then quantitatively estimates the diffusion profile using a probability density function with a high angular resolution. Studies have suggested that DSI can reliably observe the multidirectional fibers within each voxel and allow fiber tracking along different directions, which can improve fiber reconstruction reflecting the true but complicated brain structures that were not observed in the previous DTI studies. Moreover, with increasing angular resolution, DSI is able to reveal new neuroimaging biomarkers used for disease diagnosis and the prediction of disorder progression. However, so far, this method has not been used widely in clinical studies, due to its overly long scanning time and difficult post-processing. Within this context, the current paper aims to conduct a comprehensive review of DSI research, including the fundamental principles, methodology, and application progress of DSI tractography. By summarizing the DSI studies in recent years, we propose potential solutions towards the existing problem in the methodology and applications of DSI technology as follows: (1) using compressed sensing to undersample data and to reconstruct the diffusion signal may be an efficient and promising method for reducing scanning time; (2) the probability density function includes more information than the orientation distribution function, and it should be extended in application studies; and (3) large-sample study is encouraged to confirm the reliability and reproducibility of findings in clinical diseases. These findings may help deepen the understanding of the DSI method and promote its development in clinical applications.

Funder

Shaoxing Basic Public Welfare Program

Publisher

MDPI AG

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3