Affiliation:
1. Department of Kinesiology and Health Sciences, University of Waterloo, 200 University Ave. W., Waterloo, ON N2L 3G1, Canada
Abstract
Enhancing cerebellar activity influences motor cortical activity and contributes to motor adaptation, though it is unclear which neurophysiological mechanisms contributing to adaptation are influenced by the cerebellum. Pre-movement beta event-related desynchronization (β-ERD), which reflects a release of inhibitory control in the premotor cortex during movement planning, is one mechanism that may be modulated by the cerebellum through cerebellar-premotor connections. We hypothesized that enhancing cerebellar activity with intermittent theta burst stimulation (iTBS) would improve adaptation rates and increase β-ERD during motor adaptation. Thirty-four participants were randomly assigned to an active (A-iTBS) or sham cerebellar iTBS (S-iTBS) group. Participants performed a visuomotor task, using a joystick to move a cursor to targets, prior to receiving A-iTBS or S-iTBS, following which they completed training with a 45° rotation to the cursor movement. Behavioural adaptation was assessed using the angular error of the cursor path relative to the ideal trajectory. The results showed a greater adaptation rate following A-iTBS and an increase in β-ERD, specific to the high β range (20–30 Hz) during motor planning, compared to S-iTBS, indicative of cerebellar modulation of the motor cortical inhibitory control network. The enhanced release of inhibitory activity persisted throughout training, which suggests that the cerebellar influence over the premotor cortex extends beyond adaptation to other stages of motor learning. The results from this study further understanding of cerebellum-motor connections as they relate to acquiring motor skills and may inform future skill training and rehabilitation protocols.
Funder
Natural Sciences and Engineering Research Council of Canada