Applying Multiple Functional Connectivity Features in GCN for EEG-Based Human Identification

Author:

Tian Wenli,Li Ming,Ju Xiangyu,Liu Yadong

Abstract

EEG-based human identification has gained a wide range of attention due to the further increase in demand for security. How to improve the accuracy of the human identification system is an issue worthy of attention. Using more features in the human identification system is a potential solution. However, too many features may cause overfitting, resulting in the decline of system accuracy. In this work, the graph convolutional neural network (GCN) was adopted for classification. Multiple features were combined and utilized as the structure matrix of the GCN. Because of the constant signal matrix, the training parameters would not increase as the structure matrix grows. We evaluated the classification accuracy on a classic public dataset. The results showed that utilizing multiple features of functional connectivity (FC) can improve the accuracy of the identity authentication system, the best results of which are at 98.56%. In addition, our methods showed less sensitivity to channel reduction. The method proposed in this paper combines different FCs and reaches high classification accuracy for unpreprocessed data, which inspires reducing the system cost in the actual human identification system.

Funder

Natural Science Foundation of China

Defense Industrial Technology Development Program

Publisher

MDPI AG

Subject

General Neuroscience

Reference25 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3