Post-Mortem Analysis of Neuropathological Changes in Human Tinnitus

Author:

Almasabi Faris,Alosaimi FaisalORCID,Corrales-Terrón Minerva,Wolters Anouk,Strikwerda Dario,Smit Jasper V.ORCID,Temel Yasin,Janssen Marcus L. F.ORCID,Jahanshahi Ali

Abstract

Tinnitus is the phantom perception of a sound, often accompanied by increased anxiety and depressive symptoms. Degenerative or inflammatory processes, as well as changes in monoaminergic systems, have been suggested as potential underlying mechanisms. Herein, we conducted the first post-mortem histopathological assessment to reveal detailed structural changes in tinnitus patients’ auditory and non-auditory brain regions. Tissue blocks containing the medial geniculate body (MGB), thalamic reticular nucleus (TRN), central part of the inferior colliculus (CIC), and dorsal and obscurus raphe nuclei (DRN and ROb) were obtained from tinnitus patients and matched controls. Cell density and size were assessed in Nissl-stained sections. Astrocytes and microglia were assessed using immunohistochemistry. The DRN was stained using antibodies raised against phenylalanine hydroxylase-8 (PH8) and tyrosine-hydroxylase (TH) to visualize serotonergic and dopaminergic cells, respectively. Cell density in the MGB and CIC of tinnitus patients was reduced, accompanied by a reduction in the number of astrocytes in the CIC only. Quantification of cell surface size did not reveal any significant difference in any of the investigated brain regions between groups. The number of PH8-positive cells was reduced in the DRN and ROb of tinnitus patients compared to controls, while the number of TH-positive cells remained unchanged in the DRN. These findings suggest that both neurodegenerative and inflammatory processes in the MGB and CIC underlie the neuropathology of tinnitus. Moreover, the reduced number of serotonergic cell bodies in tinnitus cases points toward a potential role of the raphe serotonergic system in tinnitus.

Publisher

MDPI AG

Subject

General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3