Functional Connectivity between the Resting-State Olfactory Network and the Hippocampus in Alzheimer’s Disease

Author:

Lu ,Testa ,Jordan ,Elyan ,Kanekar ,Wang ,Eslinger ,Yang ,Zhang ,Karunanayaka

Abstract

Olfactory impairment is associated with prodromal Alzheimer’s disease (AD) and is a risk factor for the development of dementia. AD pathology is known to disrupt brain regions instrumental in olfactory information processing, such as the primary olfactory cortex (POC), the hippocampus, and other temporal lobe structures. This selective vulnerability suggests that the functional connectivity (FC) between the olfactory network (ON), consisting of the POC, insula and orbital frontal cortex (OFC) (Tobia et al., 2016), and the hippocampus may be impaired in early stage AD. Yet, the development trajectory of this potential FC impairment remains unclear. Here, we used resting-state functional magnetic resonance imaging (rs-fMRI) data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) to investigate FC changes between the ON and hippocampus in four groups: aged-matched cognitively normal (CN), early mild cognitive impairment (EMCI), late mild cognitive impairment (LMCI), and AD. FC was calculated using low frequency fMRI signal fluctuations in the ON and hippocampus (Tobia et al., 2016). We found that the FC between the ON and the right hippocampus became progressively disrupted across disease states, with significant differences between EMCI and LMCI groups. Additionally, there were no significant differences in gray matter hippocampal volumes between EMCI and LMCI groups. Lastly, the FC between the ON and hippocampus was significantly correlated with neuropsychological test scores, suggesting that it is related to cognition in a meaningful way. These findings provide the first in vivo evidence for the involvement of FC between the ON and hippocampus in AD pathology. Results suggest that functional connectivity (FC) between the olfactory network (ON) and hippocampus may be a sensitive marker for Alzheimer’s disease (AD) progression, preceding gray matter volume loss.

Publisher

MDPI AG

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3