Assessing the Effects of the Topical Application of L-Menthol on Pain-Related Somatosensory-Evoked Potentials Using Intra-Epidermal Stimulation

Author:

Makibuchi Taiki12ORCID,Yamashiro Koya13ORCID,Anazawa Sayaka2ORCID,Fujimoto Tomomi13ORCID,Ochi Genta13ORCID,Ikarashi Koyuki13,Sato Daisuke13ORCID

Affiliation:

1. Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan

2. Field of Health and Sports, Graduate School of Niigata University of Health and Welfare, Niigata 950-3198, Japan

3. Department of Health and Sports, Niigata University of Health and Welfare, Niigata 950-3198, Japan

Abstract

L-menthol is known to activate transient receptor potential melastatin 8 (TRPM8) and induce analgesia to thermal stimuli. However, since thermal stimulation leads to the interaction among the other TRP channels, it was unclear whether L-menthol causes analgesia to stimuli other than thermal stimuli. Therefore, we aimed to investigate whether activating TRPM8 via topical application of 10% menthol solution attenuates pain-related somatosensory-evoked potentials (pSEPs) and affects numerical rating scale (NRS) score using intra-epidermal electrical stimulation (IES). We applied 10% L-menthol or control solution on the dorsum of the right hand of 25 healthy participants. The pSEP and NRS, elicited by IES, and sensory threshold were measured before and after each solution was applied. The results showed that the topical application of 10% L-menthol solution significantly reduced N2–P2 amplitude in pSEPs compared with the control solution. Moreover, the N2 latency was significantly prolonged upon the topical application of L-menthol solution. NRS scores were similar under both conditions. These results suggest that topical application of L-menthol does not alter subjective sensation induced using IES, although it may attenuate afferent signals at free nerve endings even with stimuli that do not directly activate TRP channels.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3