Biologically-Based Computation: How Neural Details and Dynamics Are Suited for Implementing a Variety of Algorithms

Author:

Dumont Nicole Sandra-Yaffa1ORCID,Stöckel Andreas2ORCID,Furlong P. Michael1ORCID,Bartlett Madeleine1ORCID,Eliasmith Chris12ORCID,Stewart Terrence C.3ORCID

Affiliation:

1. Centre for Theoretical Neuroscience, University of Waterloo, Waterloo, ON N2L 3G1, Canada

2. Applied Brain Research Inc., Waterloo, ON N2T 1G9, Canada

3. National Research Council, University of Waterloo Collaboration Centre, Waterloo, ON N2L 3G1, Canada

Abstract

The Neural Engineering Framework (Eliasmith & Anderson, 2003) is a long-standing method for implementing high-level algorithms constrained by low-level neurobiological details. In recent years, this method has been expanded to incorporate more biological details and applied to new tasks. This paper brings together these ongoing research strands, presenting them in a common framework. We expand on the NEF’s core principles of (a) specifying the desired tuning curves of neurons in different parts of the model, (b) defining the computational relationships between the values represented by the neurons in different parts of the model, and (c) finding the synaptic connection weights that will cause those computations and tuning curves. In particular, we show how to extend this to include complex spatiotemporal tuning curves, and then apply this approach to produce functional computational models of grid cells, time cells, path integration, sparse representations, probabilistic representations, and symbolic representations in the brain.

Funder

CFI

OIT

NSERC Discovery

AFOSR

NRC

Publisher

MDPI AG

Subject

General Neuroscience

Reference70 articles.

1. Eliasmith, C., and Anderson, C.H. (2003). Neural Engineering: Computation, Representation, and Dynamics in Neurobiological Systems, MIT Press.

2. A Large-Scale Model of the Functioning Brain;Eliasmith;Science,2012

3. Choo, X. (2018). Spaun 2.0: Extending the World’s Largest Functional Brain Model. [Ph.D. Thesis, University of Waterloo].

4. Reed, S., Zolna, K., Parisotto, E., Colmenarejo, S.G., Novikov, A., Barth-Maron, G., Gimenez, M., Sulsky, Y., Kay, J., and Springenberg, J.T. (2022). A generalist agent. arXiv.

5. Mastering the game of Go with deep neural networks and tree search;Silver;Nature,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3